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Abstract —A reflection chart is some grid of coordinates on which to plot
an impedance locus over a frequency range. Tafdng as a reference a
constant real impedance, one may construct contoors of the reflection
coefficient (or the related VSWR, reflection loss, etc.). The reference may

be the wave impedance of a transmission fine. This may be a line
connecting radio equipment with an antenn~ or’ it may be a standard line

usid in measuring the impedance. The reflection chart in widest use is the

so-crrfled “Smith Chart” proposed by Phifip H. Smith in 1939. It is one
form of the hemisphere chart, which was proposed, also in 1939, by Philip

S. Carter. Its properties and uses are described. It has some limitations. A
reference vafne must be assigned, after which the shape of a locns depends

on this vahre. Also, a locus is crowded toward the rim of the ch&t. A

logarithmic reflection chart’ has recently been proposed by the author,

which overcomes these limitations but loses some desirable features of the
hemisphere chart.

I. INTRODUCTION

A REFLECTION CHART is a pair of coordinates on

which to plot an impedance locus over a range of

frequency. The complex impedance may be describ~d in

rectangular or polar coordinates. The impedance may be

expressed by a ratio over a reference value ( ZO), which is

customarily the constant real wave impedance of a trans-

mission line or cable. Then this ratio determines the reflec-

tion loss in the transfer of power’ between a device having

the general impedance and a device having the referenc~

impedance.

The most widely known of reflection charts is the so-

called Smith Chart, which was first published 45 years ago
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in 1939 [6]. It is one form of the hemisphere chart. On a

circular area, there is an orthogonal grid of circular lines

marked with the real and imaginary components of the

impedance ratio. These cover the entire range of imped-

ance with positive-real part. This feature is peculiar to any

hemisphere chart.

There are various uses of the hemisphere cart. Smith

emphasized its utility for computations with the aid of a

radial scale pivoted at the center of the chart. Typical

computations were series and parallel impedance, and the

transformation of impedance through a section of line. The

radial scale could be calibrated in any function of the

reflection coefficient (p), such as the reflection loss at a

junction or the voltage standing-wave ratio (VSWR = S) in

a line terminated in the impedance. Carter, in his simulta-

neous publication [5], emphasized the use of the hemi-

sphere chart with a standing-wave indicator to measure the

impedance ratio of a load on a line. On the circular area,

he showed a grid of circular lines marked with the magni-

tude and angle of the impedance ratio, corresponding to

latitude and longitude on a hemisphere., The most ad-

vanced equipment for impedance measurement at high

radio frequencies (say above 1 MHz) uses an automatic

mechanical plotter on the Smith Chart, with an option of

digital readout of the reflection coefficient (magnitude and

angle) [25].

The hemisphere chart, by virtue of its orthogonal cir-

cular coordinates, offers much opportunity for displaying

the frequency behavior of an impedance network and

various relations, such as resonance. One common applica-

tion is the wide-band matching of a load that has some

limitation on its bandwidth, such as a resonant antenna,
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One should bear in mind that the reflection coefficient is

essentially the output of a bridge which is balanced for the

reference value of impedance. The association of the mea-

surement with a transmission line enables one to picture

the significance of the output. Also, it enables the use of a

length of line between the unknown impedance and the

measuring device. The hemisphere chart best displays the

operation, of such a system.

The hemisphere chart requires a choice of the reference

value. Then it offers the clearest display of impedance

variation in the vicinity of this value. Far from this value,

the display is compressed near the rim of the chart.

There are some other sets of coordinates that offer some

different opportunities for the display of an impedance

locus and its implied reflection coefficient against a refer-

ence value. The following were used by the author for

plotting an impedance locus that would have the same size

and shape at any impedance level. It is implicit that the

same would be true of a locus of constant reflection, but it

would not be a circle.

One is the log of the complex impedance [15], It has

parallel boundaries at one quadrant of angle, with

compression and distortion of the locus near either

extreme of angle.

Another is the “logarithmic reflection chart” [21],

[23]. Its log-log coordinates enable a display of

impedance magnitude and angle with no boundaries

and, hence, no compression. It gives equal weight to

reflection by magnitude ratio or impedance angle.

This account is intended to place in perspective the

various concepts and practical applications of the reflec-

tion chart as a grid on which to plot an impedance locus

over a range of frequency.

II. SYMBOLS

The letter symbols used herein are those I chose in 1948

[14]. With few exceptions, they correspond to P.H. Smith’s

book published in 1969 [19].

The planes of complex impedance ratio and reflection

ratio are described for separate identification and inter-

relations, as follows:

z =Z/ZO = zexpj+= r+ jx= R/ZO + jX/ZO

z–l
w=–wexp–j2~=u+ju=—

2+1

s–l

‘= P=S+l

S = r on scale of upper vertical radius of hemisphere chart.

The peculiar polar definition of the voltage–reflection ratio

w is chosen for several reasons.

●

●

●

The negative sign of w places the angular origin at

the origin of impedance ratio (z= O).

The angle – 2j3 is the angle of reflection in a line of

length /3 radians or /3/27r wavelengths.

The short-circuit reactance of a nondissipative line

(sow= l)isx=tan13.

1009

Both /3/2n and x are to be scaled on the rim of the chart.

ZO= reference impedance (wave impedance of line)

(constant pure resistance) (ohms)

Z = Z exp j+ = R + jX = complex impedance (ohms)

z = Z/Z. ==z exp jo = r + jx = complex impedance
ratio

Z,@ = polar components of impedance (ohms, radians)

R, X =series rectangular components of impedance

(ohms)

w = – w exp – j2/3 = u‘+ j~ = complex voltage–re -

flection ratio

w = p = ~~ = scalar reflection ratio (coefficient)

(radius on hemisphere chart)

~ = angle length of line (Zo)

d = fl/277 =’ length of line in wavelengths
~=l+p

~ ==voltage standing-wave ratio (VSWR > 1)

S = r o~- scale of upper radius on vertical axis of

hemisphere chart.

See special symbols for logarithmic reflection chart.

III. HISTORY

The background of the reflection chart is the plotting of

an impedance lCICUSover a frequency range. The coordi-

nates are the two parts of a complex impedance (say R and

X). The locus is marked with a frequency scale.

“An early example is the motiona~impedance circle for a

telephone receiver with a resonant diaphragm. It was de-

scribed in Everitt’s textbook in 1932 and 1937 [4]. Over the

audio-frequency range, the impedance is the sum of two

complex comporlents. One gives a monotonic locus repre-

senting the driving coil. It can be measured with the

diaphragm blocked. The other gives a superposed circle

representing the interaction with the mechanical resonance

of the diaphragm.

The use of a slotted line with a sliding probe was

proposed for impedance measurements before the advent

of the hemisphere chart. Various charts were proposed for

computation of the complex impedance from such observa-

tions. They lacked the principal attractions of the hemi-

sphere chart.

The evolution of the hemisphere chart occurred in the

1930’s. Two milestones we worthy of mention. Each one is

a locus of the constant reflection coefficient plotted on

rectangular coordinates of complex impedance over the

positive-real half-plane. The first was made by Smith at

BTL in 1931 but not published until much later [1], [19].

The contours of the constant reflection coefficient ap-

peared as confocal circles. The second was published by

the author in 1936 [2], [3]. Similar contours were identified

with the constant reflection loss and, hence, with the

constant reflection coefficient. The latter was made for the

purpose of evaluating wide-band matching networks asso-

ciated with a resonant antenna [3].
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Fig. 1. The Carter Chart (RCA Reuiew, 1939).

Then, the hemisphere chart was conceived to display the

entire range of positive-real impedance on the area of a

circle. In the same month (January 1939), the hemisphere

reflection chart was published by Philip S. Carter in RCA

Review [5] and by Philip H. Smith of BTL in Electronics

[6]. These are reproduced as Figs. 1 and 2. The hemisphere

chart as a projection of one-half the impedance sphere was

published by E. U. Condon in 1942 [7].

I derived independently the hemisphere chart in a period

ending on April 4, 1941, A few days later, Phil Carter was

in my office for an IRE committee meeting and I told him

about it. He said it was a good idea, and that he had

published it two years before.

In the Little Neck Laboratory of Hazeltine Corporation,

we were soon using long slotted lines for measuring TV

antennas around 40 MHz. Our war work on IFF led to

slotted-line measurements of antennas at 150–200 MHz

and upward. In 1942, we printed our version of the Carter

Chart in quantities for use as graph paper [8]. I prepared

numerous memos on ~its features and its use. On January

14, 1943, I described the hemisphere chart to the Radio

Club of America in their regular meeting at Columbia

University. Gradually, the Smith Chart came into common

use in other laboratories.

We adopted the one logical orientation- of the hemi-

sphere chart [8]. All others adopted one or the other of the

different orientations of Carter and Smith. I published a

comprehensive presentation of our views in 1948 [14].

A major development was automatic plotting on the

hemisphere chart. Instantaneous display of a locus on a

cathode-ray tube was described by Arthur L. Samuel in

1947 [13]. Now, automatic mechanical plotting is employed

in the most advanced measuring equipment for high radio

frequencies (say above 1 MHz) [25].

The hemisphere chart has been found to be very useful

in presenting and manipulating impedance computations

for various purposes. One of the most common is the

design of douMe tuning for wide-band matching between a

line and a resonant antenna.

Using the hemisphere chart, we took for granted one

peculiarity of that chart. I am referring to the need for

assigning a reference value for the center, and the problem

of compression of a locus far from the center, approaching

the rim of the chart. I came to use some alternatives that

overcame this objection, partially or wholly, as mentioned

above.

In 1948 [15], I plotted some impedance loci on a rectan-

gular grid of the logarithm of impedance. Its coordinates

were magnitude and angle with compatible scales (napiers

and radians, or their equivalent decades and degrees). (See

also [18].) My immediate motivation was the construction

of a ratio mean between two points by bisecting a connect-

ing straight line. On this grid, it was implicit that the size

and shape of a locus was independent of magnitude, but

there remained the compression near the boundary at

either extreme of angle (+900). If used as a reflection

chart, it would offer only a half-solution of the compres-

sion problem.

Many years later, I sought a real solution to the problem

of compression near a boundary. The result was a unique

solution, from the viewpoint of a reflection chart. It is the

“logarithmic reflection chart,” which I published in 1983
[21], [23]. The impedance magnitude and angle are plotted

on log–log rectangular coordinates. On the vertical real

axis, the log of magnitude corresponds to the log of VSWR.

A compatible horizontal scale is derived as the log of

VSWR caused by reactance only (with resistance
“matched”). On these scales, a reflection locus is centered

on the vertical axis and has quadrantal symmetry. Far
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from the axis, a locus is distorted but does not suffer

compression. This chart loses the simplicity of the circular

loci on the hemisphere chart but gains some qualities that I

have found extremely useful in the synthesis of wide-band

impedance-matching networks. It is remarkable that

another “unique” reflection chart should have evolved so

long (four decades) after the hemisphere chart.

The history of the use of reflection charts has two

branches. They may be correlated with the first two publi-

cations in 1939. One is the use emphasized by Carter [5],

making observations in a transmission line and deducing

the impedance of a load on the line. The other is the use

emphasized by Smith [6], for graphical computation of the

result of adding or subtracting a complex impedance in

series or in parallel, and the inversion of impedance.

The measurement application originally relied on stand-

ing-wave observations by a sliding probe in a slotted line to

determine the reflection coefficient. Subsequently, the di-

rectional coupler enabled the direct measurement of the

reflection coefficient, amplitude, and phase, from which a

point could be automatically plotted on the hemisphere

chart. A coordinate grid could be chosen for reading any

related set of numbers, such as R and X of impedance Z.

This is the most common method of measuring impedance

at high radio frequencies (say above 1 MHz).

The computation application is commonly used in con-

junction with measurements. It displays the reflection coef-

ficient, perhaps in terms of VSWR tolerance of mismatch

over a frequency band. It is convenient for graphical

computation of the effect of series or parallel impedance,

especially reactors in a matching network. If the computa-

tion is performed by a numerical computer, the result may

be plotted on the hemisphere chart.

Aside from graphical computation, the reflection chart is

useful mainly for displaying a frequency locus of imped-

ance in such a way as to be most meaningful on sight. The

logarithmic reflection chart may offer the greatest utility in

this function.

IV. PROJECTIONS OF THE IMPEDANCE SPHERE

Relative to a constant-real reference value, the complex

impedance on a plane can be projected on a sphere [7],

[14]. Fig. 3(a) shows this projection. The positive-real half-

plane is projected on one hemisphere, which gives the

name to the hemisphere chart. The unit impedance ratio is

at the center of this hemisphere.

Fig. 3(b) shows the projection of this hemisphere on a

plane tangent at the center. The circle bounding this pro-

jection is the locus of the unit coefficient of reflection, with

zero at the center. This circle becomes the hemisphere chart

of the reflection coefficient, on which may be plotted the

impedance ratio.
These projections of the impedance sphere were de-

scribed by Edward U. Condon in 1942 [7], and I should

have given him credit in my 1948 monograph [14].

In each of these projections, a circle is projected as a

circle. (A straight line is a special case of a circle.) It

follows that a circle on either nlane is transformed to a

co
z PLANE

?=r+jx

(a)
-l= o\

r
I

j Z PLANE

‘jx

y PLANE

y=u+jv

(b)

u

z

Fig. 3. Projectionsof the impedancesphere.(a) On the plane of imped-
anceratio. (b) On the plane of reflection ratio.

circle on the other. For example, the R and X contours are

straight lines on the impedance plane and, hence, circles on

the reflection plane. This fact is responsible for the simplic-

ity of the circle chart and its versatility in geometric

construction of various relations.

V. ORIENTATIONS OF THE HEMISPHERE CHARTS

The graphical presentation of engineering relationships

should be made in a form adopted for logical reasons. A

principal consideration is the communication of significant

information. Another consideration is consistent use of the

logical form.

Coordinates for plotting an impedance locus were first

taken, for granted from a precedent for a different purpose.

The slavish adherence to that convention had led to com-

mon use of an orientation that is devoid of logic. I refer to

the Carter Chart and to the later form of the Smith Chart.

It lies on its side. I immediately adopted an equivalent

form but right-side up. The history of these practices is

worthy of note. It is relevant to the hemisphere chart and

any other grid for plotting a locus of complex impedance.

Fig. 4 shows some options in the choice of a pair of

rectangular coordinates. Fig. 4(a) is the classical orienta-

tion for plotting y = ~(x ). It was natural for that purpose

and did not offend any considerations of logic.

With the theory of functions of a complex variable, there

was a need for plotting a locus of simultaneous variation of

two coordinate-dependent variables with some indepen-

dent variable. An example is the frequency locus of Z =

R(Q) + jX(a). Because a complex variable was described

as z = x + iv. it was matmed on the same coordinates. as
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Y

y= f(x)

x

(a)

Y

(b)

x (HIGH)

I

Y (SYMMETRICAL)

(c)

Fig. 4. Choice of rectangular coordinates for two-dimensional plotting
on a plane. (a) Classical pair of coordinates for independent and
dependentvariables.(b) Conventional adoption of samecoordinatesfor
map of coordinate parts of complex variable. (c) Logicaf coordinates
for map of complex variable (especially the positive-reaf half-plane).
Smith, 1931 [1]; Wheeler, 1936 [8], [9].

seen in Fig. 4(b). This practice disregarded some logical

considerations.

A thoughtful election would have led to the practice

shown in Fig. 4(c).

@# First, the axis of the imaginary part (y) typically has

paired values and symmetry, so it is natural to use a

left–right orientation.

@ Secondly, the positive-real scale is naturally associ-

ated with increasing or “higher” values, so it is

natural to use an upward orientation.

Both of these considerations are especially relevant to a

map of Z( LO), with which we are here concerned. It is

notable that Smith and I chose this orientation for our first

Im

(a)

+j

o

8

a z/zo

-j
(b)

o

-j

CD

+j

a)

z/z.

(c)

z/z~
03

-j

0

+j

o

(d)

Fig. 5. Choice of hemisphere-chartcoordinates for map of positive-reaf
hemisphere of impedance ratio. (a) Conventional coordinates for map
of reflection coefficient on hemisphere chart. Carter, 1939 [5].
(b) Conventional display of positive-reaf hemisphere of impedance
ratio. Carter, 1939 [5]: Smith later [19]. (c) Upside-down display of
positive-real hemisphereof impedance ratio. Smith, 1939 [6] and 1944
[10]. (d) Logicaf display of positive-reaf hemisphere of impedance
ratio. Wheeler, 1942 [8] and 1948[14].
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r

1013
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~ PLANE (-Lp=o

‘ VCAL’,.,
I I I

-1 0 +1
x

(a)

‘PLANE /-f---Y=’
I d / \

-k-f-==++’

(b)
Fig. 6. The two coordinate systemsused for impedancecharts. (a) The

plane of impedance ratio (polar or rectangular coordinates). (b) The
plane of reflection ratio (hemispherechart of impedanceratio).

charts [1], [2]. That should have served as a precedent for

later practices.

Fig. 5 shows the adaptation of such coordinates to the

hemisphere chart, which is the circle of the reflection

coefficient. Fig. 5(a) shows the conventional coordinates

used by Carter [5]. Fig. 5(b) shows the pattern of positive-

real impedance on these coordinates, used by Carter and

later by Smith in his book [19]. Fig. 5(c) shows the upside-

down pattern first used by Smith but later superseded by

Fig. 5(b). Fig. 5(d) shows the pattern of positive-real

impedance on the logical coordinates which I adopted

when I began to use the hemisphere chart. Unfortunately,

the conventional display in Fig, 5(b) is most commonly

used for the familiar Smith Chart. Both have the same

concentric circles of the reflection coefficient, VSWR, re-

flection loss, etc. Peculiarities of an impedance locus are

similarly visible in both forms.

VI. RELATIONS BETWEEN IMPEDANCE RATIO AND

REFLECTION RATIO

The impedance ratio was previously plotted on rectangu-

lar coordinates (z= r + jx) to display a locus over a range

of frequency or some other parameter. Here, the same

locus is plotted on polar coordinates of the reflection ratio

(reflection coefficient, w= u + ju) within a unit circle. The

transformation of this locus from either plane to the other

is determined by the relation between the two sets of

coordinates. These relations are shown in simple form in
Figs. 6–10.

z PLANE I

I

490” w

o

W=l x
(a)

y PLANE

y..w~~p.

W= s-l

‘+1

Wt

j2

(b)

Fig. 7. The polar componentsof the reflection ratio.

Fig. 6 shows the transformation from the positive-real

half-plane of impedance to the inside of a circle of reflec-

tion ratio. These are the two projections of one hemisphere

as shown in Fig. 3.

Fig. 7 shows the same coordinates with typical loci of the

reflection ratio in polar coordinates. In Fig. 7(a), the

complete circle of constant reflection (w or p) on the z

plane is the same as previously used by Smith [1] and the

author [2], [3]. In those cases, we were not concerned with

the angle of reflection, which is shown by an orthogonal set

of circles. Fig. 7(b) shows merely the polar coordinates of

the reflection ratio.

Fig. 8 shows the transformation from the impedance

ratio in polar coordinates (a) to latitude and longitude cm

the hemisphere chart (b). The latter is the simplest map of

the impedance ratio on the hemisphere chart. It was shown

by Carter [5] so it is designated the Carter Chart. This is

the form I adopted in 1942 for use as graph paper. It has

the simplest rules for inversion.

Fig. 9 shows the transformation of the rectangular coor-

dinates of impedance to a set of orthogonal circles on the

hemisphere chart. The two coordinates are shown sep-

arately on the two halves for clarity. Fig. 10 shows the

same for the inverse impedance ratio, which is the admit-

tance ratio. Figs. 9(b) and 10(b) are the Smith Chart [6],

[10], [19]. They are suited for adding series components of

impedance, then inverting and adding parallel components

of admittance. The Smith Chart is most widely used, and

has been found to be extremely useful.
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z PLANE i
~=zexpj+

3

3 -90” I
x

1/30 l/3 I 90” 3

y PLANE

(a)

z

z PLANE i
z=r+jx

3

I

1/3

o l/3 I

~ PLANE

(a)

ro

—x

o

(h)
(b)

\ “J Fig. 9. Thesenes rectangular componentsof theimpedance ratio.
Fig. 8. Thepolar componentsof theimpedance ratio.

impedance is that of the sum (a, ~ ). At any stage, the

VII. TRANS~ISSION-LINE TRANSFORMATION OF
impedance ratio is

IMPEDANCE l+W

‘=l–W”
(2)

If a length of line is inserted between the driving point

and an impedance, the impedance k transformed to pre- There are a few familiar rules for impedance transforma-

sent a different value. If the line impedance (20) is taken tion by a length of lossless line at one frequency.

as the reference on a hemisphere chart, any point on the . A quarter-wave line (~= 7r/2, ~ = A/4) inverts the
impedance locus is modified in two ways. impedance on the chart. For examule, a low resis-

e

‘@

Each

It is rotated by an angle equal to double the phase

. .
ta~ce is multiplied by S2.

length of the line. . A half-wave line (~ = r, d = A/2) rotates by one

Its radius is decreased by the power ratio of attenua- circle and therefore leaves the impedance unchanged.

tion (if any) in the line. VIII. TRANSMISSION-LINE MEASUREMENT OF

of these results reflects the round-trip effect of the IMPEDANCE

line on the reflection coefficient of the load impedance.

Their simplicity is a remarkable peculiarity of the hemi-

sphere chart.

Referring to Fig. 11, any point on the chart may be

regarded as the impedance of a length of line on short

circuit. The reflection coefficient is reduced from unity and

retarded in angle by the round-trip attenuation and phase

(2a + j213). The complex reflection coefficient becomes

w=-wexp -j2~=-exp-2aexp –2/3

=–exp–2(a+ j~). (1)

The minus sign is required for zero impedance of zero

length on short circuit.

In general, any complex load impedance can be regarded

as a length of line on short circuit (a’, ~’). Then, an

inserted length may add its values ( a“, ~“). The resulting

There are two methods commonly used for measurement

of an impedance connected to the far end of a lossless

transmission line. The near end is connected with a signal

generator of the desired frequency range. The methods are

diagramed in Fig. 12.

The original method is the one proposed by Carter [5]. A

sliding probe is weakly coupled with a long line to observe

minimum and maximum voltage (or current) and the loca-

tion of the minimum (being sharper than the mhximum).

From these observations

max V s–1s=— —
“ ‘= S+l=W;rnin V ‘

P = 2rd/A or (360 °)d/A

(3)

l+W
w= – wexpj2/3; z=~=Z/ZO. (4)
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r
z PLANE

l/~ = I/r’+ l/jx’

3

x
o 1/3 I x’ 3

y PLANE

(a)

u)

Fig. 10. The parallel rectangular componentsof the impedanceratio.

Fig. 11. Sumof length quantities around the chart.

In effect, the impedance at tin P’ is measured to be

ZO\S. Then, the load impedance is computed by subtract-

ing the intervening length of line (d= ( /3/27r ) X).

The later method evolved with the development of the

directional coupler. A weak coupler at a point on the line

enables direct measurement of the complex reflection ratio,

as indicated. The distance to the load (dC) is subtracted as

above to give the reflection coefficient at the load, which

determines the complex load impedance.
This method is used in the Hewlett-Packard line of the

most advanced impedance measuring equipment [25]. Its

utility is restricted to a high-RF range (typically above 1

MHz). It happens that one type of coupler has directivity

nominally independent of frequency. That is the parallel-

line coupler invented long before by Affel at BTL and

%

dc -+

BKO V V FRD

DIRECTIONAL COUPLER (WEAK)

&v
MIN V

~= BKDV ANGLE ADJUSTED

- FRD V BY DISTANCE dc

Fig. 12. Two methods for measurementof impedancewith referenceto
a transmissionline.

o

(a)

o

(b)

Fig. 13. Diagrams of the two methods of impedance measurement.
(a) By sliding probe on slotted line. (b) By directional coupler.

Pistolkors in Russia. I adapted it to the coaxial line about

1944 [11]. The usual value of 20 is 50 fl.

In Fig. 13, these two methods are explained with refer-

ence to the hemisphere chart.

Fig. 13(a) shows the method of a sliding probe, usually

on a coaxial line. A common line is a round inner conduc-

tor between two planes. It was used by the author from

1944, and later was adopted by Hewlett-Packard. The

VSWR (S) is measured and the location of minimum
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impedance (resistance ratio =1/S) is noted (d). It is taken

as the zero reference in Fig. 13(a). From the point 1/S on

the zero axis, the radius is rotated backward by d to locate

the impedance ratio (z) being measured.

Fig. 13(b) shows the method of a directional coupler,

usually a backward coupler in a coaxial line. First, the

effective length of line between coupler and load is usually

determined for short-circuit or open-circuit termination, It

is determined by the angle of the (unit) reflection coeffi-

cient observed on the coupler. Then, the impedance to be

measured is connected, the reflection coefficient (w) is

observed in terms of magnitude and angle, and it is located

on the chart. The radius is rotated backward by the known

length of line to locate the impedance ratio (z) being

measured.

For either method, the chart gives a graphical view of the

process.

IX. THE USE OF A BLANK CHART

Some of the principal uses of the hemisphere chart do

not require a complete grid of coordinates:

. to display the behavior’ and critical frequencies of an

impedance locus over a frequency range;

. to show its compliance with tolerance circles of

reflection (commonly VSWR in decibels);

. to take automatic mechanical plotting of a locus by

frequency sweeping.

Then, an overlay or underlay may be used to provide any

desired set of coordinates (and at any orientation). This

enables the plot to be interpreted or read in terms of such

coordinates.

For these uses, we have come to prefer a blank chart for

avoiding the confusion of a “busy” grid of coordinates

(notably the Smith Chart). Fig. 14 shows a skeleton chart

for this purpose. It contains the essential scales, from

which any interpretation can be derived by some simple

construction. A blank chart the same size as the available

Smith Charts can be made with the skeleton scales. Then

one may select any one of the available grids for use as

overlay or underlay. This retains the convenience of the

skeleton chart for annotations. We adopted this practice at

Wheeler Laboratories in 1948. It superseded the Carter

Chart, which had been used as graph paper by some of the

same group previously in the Hazeltine Little Neck

Laboratory. The same practice is continuing in the succes-

sor group now active in the Research Laboratories of

Hazeltine Corporation.

X. EXAMPLES OF USE

The number and variety of uses of the hemisphere chart

are found in the extensive literature on the subject. The

most prolific source may be the IEEE TRANSACTIONS ON

MICROWAVE THEORY AND TECHNIQUES. Smith’s book is

one collection [19]. Two typical examples are given here.

As usual, the locus is a trace of impedance variation over a

range of frequency. The frequency scale has to be marked

on the locus.

90°
I

?5°

&JO

.900 . ~oo +oo 00 ~oo

450-
600 Q 900

1 ~.

\ \

Fig. 14. The stateson the skeletonhemispherechart.

m

Fig. 15. Frequenciesof resonancein a long biconicd dipole antenna.

Because the hemisphere chart had its origin as a chart of

reflection at the end of a transmission line, its principal

applications have been related to that subject. Various

other applications are a by-product of its properties. The

most common use of such a line has been the connection of

radio equipment with a remote antenna. Therefore, a typi-

cal use of the reflection chart is the presentation of the

frequency locus of the complex impedance of an antenna.

Fig. 15 shows the impedance locus of a long, rather thin,

biconical antenna. (The biconical is chosen, rather than a

cylindrical wire, to avoid excess capacitance at the termi-
nals.) Its half-wave first resonance is at ~1 and its higher

resonances are at f2, f3, etc., near integral multiples of fl.
The following are notable features of the locus on the

reflection chart.

. Each frequency of resonance appears near a mini-

mum or maximum of impedance.
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●

●

●

●

●

●

Each frequency of resonance may be taken at the

point of zero angle, which is the crossing of the

vertical axis, as indicated.

The locus on the hemisphere chart is a spiral tending

toward convergence at higher frequencies.

The rotation is proportional to the length in wave-

lengths.

The convergence is proportional to the radiation of

power from a traveling wave along the length.

At frequencies much below the first resonance, the

locus approaches the rim of the chart, which indi-

cates the small radiation power factor of a “small

antenna” [23].

At higher frequencies, the spiral converges toward a

point representing the wave resistance of the biconi-

cal conductor (here taken as a reference at the center

of the chart).

Most of these features are characteristic of any reflection

chart.

Fig. 16 shows another application. It is related to an

antenna or other load with rather narrow resonance at one

frequency ( ~0). A common objective is a close approxima-

tion to matching the load impedance to a line over a

frequency band (~1 to ~z) wider than the resonance. The

deficiency of matching is described by the tolerance of

reflection within the bandwidth (in terms of p >0 or

S > 1). There are two parts to the matching process:

. transforming the load impedance to fall within the

smallest circle centered on the axis of pure R;
tB transforming this center to the line wave resistance.

The most common and most elementary form of wide-

band matching is “double tuning” [24]. It was first used by

the author in 1942, and in various other laboratories around

that time. It is accomplished by providing in the matching

network a second resonance at a frequency near ~0, be-

tween ~1 and f2. With reference to Fig. 16, it is here

developed on the hemisphere chart.

●

●

Z. is the locus of the load, taken to be an antenna of

the type represented in Fig. 15. It has its lowest

resonance at f.. It is a series resonance at minimum

impedance. At edgeband ( ~1, f2), ithas a greater

impedance, which is here taken as the reference

equator on the chart. Then, the locus is similar to a

contour of constant R and varying X. The ends of

the Z. locus give greatest reflection, which is to be

reduced by the matching network.

The ends of Zfl are on a contour of constant conduc-

tance (constant parallel R) shown by a dashed line.

A parallel-resonant network is designed to add op-
posite shunt susceptance. This brings together the

ends of the locus and thereby minimizes the toler-

ance circle around the locus of the resulting Z~.

This simple result could be derived by analysis, but the

chart gives a clear picture of the relations. It is easy to

o
MATCHING NETWORK ANTENNA

‘“V
a

Fig. 16. Synthesisof double tuning for wide-band matching.

prove on the chart:

. that this construction gives the smallest tolerance

circle possible by this network;

. that the reflection coefficient is squared by this pro-

cess (p~ = p:).

Having achieved this result centered on the special refer-

ence equator, the center can be transformed to the line

impedance (20 ) by a simple transformer, as shown.

XI. THE LOGARITHMIC IMPEDANCE CHART

About 1948 [15], I used another set of coordinates which

were also suited for a reflection chart with vertical axis of

real impedance. It is a logarithmic grid with compatible

scales of magnitude and angle of impedance. It offers the

feature that the shape of a locus is independent of the

reference or the level of impedance.

The feature of this chart is the compatible scales of

magnitude and angle. There is a set of scales that will give

a circular contour of reflection coefficient in the limit of a

small circle. Equal distance on both scales’ should corre-

spond to the pair of values on either row here:

Magnitude Angle Angle bounds

one napier one radian * lr/2

0.6822 decade 90 degrees *90

Fig. 17 shows this chart as it appeared in my 1948

monograph [15]. Compatible scales gave equal weight to

vertical and horizontal distance. There was no need for

contours of the reflection coefficient. The motivation was
to place the ratio mean at the middle of a line joining any

two points of impedance. This is exemplified by the sloping

dashed line.

This chart was a half-solution of the problem of crowd-

ing toward the rim of the hemisphere chart, It removes the
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Fig. 17. The logarithmic impedancechart.

top and bottom bounds by the log scale. However, it leaves

the side bounds at one quadrant of angle, and therefore the

crowding toward these bounds.

XII. THE LOGARITHMIC REFLECTION CHART

A few years ago, I again faced the two problems of the

hemisphere chart, namely,

. the shape of a locus depending on a reference value,

and

. the compression of a locus toward the rim of the

chart.

An angle scale was needed to go with the log scale of
magnitude. I perceived a unique basis for a log scale of

angle:

● the vertical log scale of impedance is also a log scale

of VSWR with zero angle;
. a horizontal log scale of the VSWR caused by angle

with level magnitude,

I name these scales log SZ and log SX. They could be plotted

on log–log coordinates in terms of S, or Z (vertical) and SX

(horizontal).

The following additional symbols are used in this sec-

tion:

z = in Z = 20 + in S= = vertical scale.

x = In SX = horizontal scale.

SZ=exp(z –zO)=Z/ZO =S*lonz axis.

SX=expx=S*l on*x axis.

q= X/R= tan@ =sinhx.

(Distinguish from Q for X/Sofa single reactor, as

in a resonant circuit.)

Note relating to the functions ln, exp, sinh, cosh:

. the natural functions (base e, napiers) are used for

convenience in theoretical relations;

. the corresponding decimal functions (base 10,

decades) can be u~ed for compatibility with the log

scales on graph paper.

By way of introduction, Fig. 8(b) shows the Carter

Hemisphere Chart [5]. Like the Smith Chart [6], [10], the

basic map of polar coordinates is the reflection-coefficient

magnitude and angle on a circular area. The Carter Chart

has superposed impedance loci in terms of Z and +. Each

of these families is made of orthogonal circular arcs. The @

loci converge toward the poles. Extreme values are crowded

toward the rim of the chart. A reference (ZO) must be

assigned. and then it determines the shaue of any imPed--. . . .
ante locus that may be traced over a range of frequency.

The chart to be described is based on rectangular logarith-

mic coordinates of Z and a function of $J.

The logarithmic reflection chart [21], [23] is a departure

from the hemisphere chart in two respects.

. The vertical scale is a logarithmic scale of impedance

magnitude (Z) so the shape of a locus is indepen-

dent of the reference value (ZO).

. The horizontal scale is a logarithmic scale related to

the impedance angle (+) in such a way as to give a

like variation with reflection coefficient.

It follows that a locus of reflection coefficient has equal

diameters on both scales. It departs from a circle by equal

flattening in all quadrants.

Referring to Fig. 18, the vertical scale is a log scale of

impedance magnitude (Z). On the vertical axis, the same

log scale gives the VSWR relative to a reference value (ZO).
This VSWR is here denoted

s,= z/z~ . (5)

The log scale becomes

z=ln Z=lh ZO+ln SZ. (6)

Here, S= may be greater or less than unity so z may be

positive or negative.

At the reference level of ZO, an angle of impedance (o)

would cause a VSWR here denoted

s = l+tan@/2 1

x 1 – tan@/2
=sec~+tan+=

sec~–tan+”
(7)
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Fig. 18. The basisfor the logarithmic reflection chart.

The log scale becomes

x = in SX= 2 atah tan@/2 = asinhtan+ = acosh (1/cos +)

(8)

Here, likewise, SX may be greater or less than unity so x

may be positive or negative, corresponding to @

A locus of the reflection coefficient (magnitude p) corre-

sponds to the familiar VSWR:

++ P>l; P==<l
l–p S+l “

(9)

The locus intersects the two axes at

SZ=S*land SX=S*l. (lo)

These points are shown in Fig. 18.

The two scales ((6) and (8)) are taken to evaluate,

respectively, Z and @ at any point on the x, z plane. The

corresponding value of the reflection coefficient (in terms

of p or S) is thereby determined over this plane, so a locus

can be graphed for any constant value. An example of such

a locus is shown in Fig. 18, centered on 20 =1. It has equal

diameters on the crossed axes

2zor2x=ln S–lnl/S=21n S. (11)

It departs from a circle by some degree of flattening in

each quadrant. The vertical log scale assures that the shape

of this locus would be the same for a center at any

reference value 20 on the vertical axis.
The most significant feature of the log chart is the

reflection locus, compared with the familiar circle centered

on the hemisphere chart. Referring to the typical locus

shown in Fig. 18, these points may be noted.

. Like a circle, it has equal crossed diameters and

four quadrants of like shape.

. Departing from a circle, each quadrant is flattened

in some degree.

z
s=

100

10

1

0.1

0.01

0.01 0.1 1 10 100 s~

89 85 80 50-0+50 80 Ss 89

100 10 5 l–o+i 5 10 100 q

Fig. 19. Reflection contourson the chart.

. The size is unbounded, thereby avoiding the

crowding near the rim of the hemisphere chart.

. The size and shape are the same for a center at

any reference ZO on the vertical axis.

The departure from a circle is a disadvantage, while the

last two features are the advantages that make the log chart

especially useful for some purposes.

The size of a locus increases with the log of VSWR, so it

has no bounds, and a wide range can be presented in a

moderate space. Decimal log scales are most convenient,

and the usual log–log graph paper is suitable.

Fig. 19 shows a decimal log chart with a family of

reflection loci. The two scales are:

● vertical Z or SZRO;

. horizontal SX.

On the horizontal scale, from (7):

@=2atan ~ =atan~(s. ‘1/%) (12)
x

R = Zcos$; Xy Zsin@. (13)

These relations describe the impedance at any point on the

chart.

The locus of any reflection coefficient(p) can be shown

to be

l+pz
—=coshxcoshz =-@ X+l/SX)(SZ+l/SZ).
l–pz

(14)

It is easily evaluated in terms of the natural log (x, z) and
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Fig. 20. Impedancecontours on the chart.

converted to decimal log. This form shows the symmetry

on both axes.

The locus approaches a small circle near the center:

(2p)2 =X2+ z’. (15)

Far out, the locus approaches a large diagonal square:

2s = Sxsz. (16)

The circle and square are outer bounds, as seen in Fig. 18.

They are tangent if S = 5.33; then the 45° radius of the

locus is less than that of the outer bounds by the factor

0.925. This factor is an example of the flattening of the arc

in each quadrant.

For computations, it is helpful to express the angle scale

in terms of q = X/R, which retains the sign of the angle:

q= X/R= tan~=~(SX –l/SX)=sinhx (17)

s.y’{~+q=
F

(18)
l+qz–q”

Below the log-log grid in Fig. 19, there are supplemental

horizontal scales in terms of the angle (+) and its tangent

(q). They are converted to SX by (7) and (18).
For graphical presentation of impedance on any scale of

frequency, it has been customary to use a log scale of Z

and R. Both of these are positive. There has been no

logical logarithmic presentation of X or O, both sides of

zero. The SX scale offers a unique solution to this problem.

It represents + @ above and below unity on the log scale.

If the Z variation is plotted from a reference (as S, =

Z/ZO), the St graph maybe superimposed about the same

unity level on the log scale.

A pair of R and X loci have the shape shown in Fig. 20.

The pair is based on one value of ZO. A family is formed

by vertical displacement with the same shape, a feature of

the log chart.

R locus: Z/ZO =exp(z – ZO) = Rcoshx = R/cos@

(19)

X locus: Z/ZO = exp ( z – ZO) = X/tanh x = X/sin@

‘X(l+*) (20)

A particular set of coordinates has been devised for

presentation of any impedance locus. The scales are loga-

rithmic in terms of VSWR, which is a measure of the

reflection coefficient. A locus of constant reflection has

equal diameters on the crossed axes but differs from a

circle. The shape of a locus is independent of the choice of

a reference value of impedance.

This logarithmic reflection chart has been found espe-

cially helpful in presenting the wide range of impedance,

which is typical of a small antenna and a wide-band

matching network for such an antenna.

XIII. CONCLUSION

A chart of contours of the reflection coefficient has

evolved through several principal forms. Each has one of

these distinctive grids of coordinates:

1)

2)

3)

4)

After

rectangular coordinates of the complex impedance;

polar coordinates of the reflection coefficient (the

hemisphere chart);

rectangular coordinates of the log of impedance

(compatible scales of magnitude and angle);

rectangular coordinates of the log of impedance

magnitude and a compatible function of the angle

(the logarithmic reflection chart).

the first. each form offers a mrticular mid on which.
may be plotted a frequency locus of impedance. The sec-

ond is the one in most common use today, as the Smith

Chart or the Carter Chart. The last offers an opportunity

for relief from some limitations of the hemisphere chart,

but at the expense of some other valuable features.

The subject of these charts is a branch of the technology

of graphic presentation of relations among some vatiables

in a physical system. In this case, the variables are frequency

and impedance. The reflection at the end of a line is an

intermediate quantity which is particularly relevant for

some applications. A chart of the reflection coefficient has

proved helpful in various ways in the course of its evolu-

tion in different forms.
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