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Abstract —A reflection chart is some grid of coordinates on which to plot
an impedance locus over a frequency range. Taking as a reference a
constant real impedance, one may construct contours of the reflection
coefficient (or the related VSWR, reflection loss, etc.). The reference may
be the wave impedance of a transmission line. This may be a line
connecting radio equipment with an antenna, or' it may be a staindard line
used in measuring the impedance. The reflection chart in widest use is the
so-called “Smith Chart” proposed by Philip H. Smith in 1939. It is one
form of the hemispheré chart, which was proposed, also in 1939, by Philip
S. Carter. Its properties and uses are described. It has some limitations. A
reference value must be assigned, after which the shape of a locus depends
on this value. Also, a locus is crowded toward the rim of the chart. A
logarithmic reflection chart' has recently been proposed by the author,
which overcomes these limitations but loses some desirable features of the
hemisphere chart.

I. INTRODUCTION

REFLECTION CHART is a pair of coordinates on
which to plot an impedance locus over a range of
frequency The complex impedance may be described in
rectangular or polar coordinates. The impedance may be
expressed by a ratio over a reference value (Z,), which is
~ customarily the constant real wave impedance of a trans-
mission line or cable. Then this ratio determines the reflec-
tion loss in the transfer of power between a device having
the general impedance and a device havmg the reference
impedance.
The most widely known of reflection charts is the so-
called Smith Chart, which was first published 45 years ago
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in 1939 [6]. It is one form of the hemisphere chart. On a
circular area, there is an orthogonal grid of circular lines
marked with the real and imaginary components of the
impedance ratio. These cover the entire range of imped-
ance with positive-real part. This feature is peculiar to any
hemisphere chart.

There are various uses of the hemisphere cart. Smith
emphasized its utility for computations with the aid of a
radial scale pivoted at the center of the chart. Typical
computations were series and parallel impedance, and the
transformation of impedance through a section of line. The
radial scale could be calibrated in any function of the
reflection coefficient (p), such as the reflection loss at a
junction or the voltage standing-wave ratio (VSWR = §)in
a line terminated in the impedance. Carter, in his simulta-
neous publication [5], emphasized the use of the hemi-
sphere chart with a standing-wave indicator to measure the
impedance ratio of a load on a line. On the circular area,
he showed a grid of circular lines marked with the magni-
tude and angle of the impedance ratio, corresponding to
latitude and longitude on a hemisphere. The most ad-
vanced equipment for impedance measurement at high
radio frequéncies (say above 1 MHz) uses an automatic
mechanical plotter on the Smith Chart, with an option of
digital readout of the reflection coefficient (magmtude and
angle) [25].

The hemisphere chart, by virtue of its orthogonal cir-
cular coordinates, offers much opportunity for displaying
the frequency behavior of an impedance network and
various relations, such as resonance. One common applica-
tion is the wide-band matching of a load that has some
limitation on its bandwidth, such as a resonant antenna.
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One should bear in mind that the reflection coefficient is
essentially the output of a bridge which is balanced for the
reference value of impedance. The association of the mea-
surement with a transmission line enables one to picture
the significance of the output. Also, it enables the use of a
length of line between the unknown impedance and the
measuring device. The hemisphere chart best displays the
operation of such a system.

The hemisphere chart requires a choice of the reference
value. Then it offers the clearest display of impedance
variation in the vicinity of this value. Far from this value,
the display is compressed near the rim of the chart.

There are some other sets of coordinates that offer some
different opportunities for the display of an impedance
locus and its implied reflection coefficient against a refer-
ence value. The following were used by the author for
plotting an impedance locus that would have the same size
and shape at any impedance level. It is implicit that the
same would be true of a locus of constant reflection, but it
would not be a circle.

® One is the log of the complex impedance [15]. It has
parallel boundaries at one quadrant of angle, with
compression and distortion of the locus near ¢ither
extreme of angle.

® Another is the “logarithmic reflectlon chart” [21],
[23]. Its log-log coordinates enable a display of
impedance magnitude and angle with no boundaries
and, hence, no compression. It gives equal weight to
reflection by magnitude ratio or impedance angle.

This account is intended to place in perspective the
various concepts and practical applications of the reflec-
tion chart as a grid on which to plot an impedance locus
over a range of frequency.

II. SyMmBOLS

The letter symbols used herein are those I chose in 1948
[14]. With few exceptions, they correspond to P.H. Smith’s
book published in 1969 [19].

The planes of complex impedance ratio and reflection
ratio are described for separate identification and inter-
relations, as follows:

1=Z/Zy=zexpjo=r+ jx=R/Zy+ jX/Z,

W= —wexp — J2,B—u+Jv-—;1

7+1
S-1
S+1
S = r on scale of upper vertical radius of hemisphere chart.

w:p:

The peculiar polar definition of the voltage-reflection ratio
w is chosen for several reasons.

® The negative sign of w places the angular origin at
the origin of impedance ratio (z = 0).

® The angle —28 is the angle of reflection in a line of
length B radians or §/27 wavelengths.

® The short-circuit reactance of a nondissipative line -

(sow=1)is x=tanp.
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Both 8/27 and x are to be scaled on the rim of the chart.

z, =reference impedance (wave impedance of line)
(constant pure resistance) (ohms)
Z =Zexpj¢ = R+ jX = complex impedance (ohms)
1=Z/Z,=zexpj¢=r + jx =complex impedance
ratio
Z, ¢ =polar components of impedance (ohms, radians)
R, X =series rectangular components of impedance

(ohms)

w=—wexp — j28 = u + jvu = complex voltage-re-
flection ratio

w=p == =scalar reflection ratio (coefficient)

(radius-on hemisphere chart)
B =angle length of line (Z,)
d =B /27 = length of line in wavelengths

§= }-—!—_Z = voltage standing-wave ratio (VYSWR >1)

S=r on scale of upper radius on vertical axis of
hemisphere chart.

See special symbols for logarithmic reflection chart.

III. HisTorRY

The background of the reflection chart is the plotting of
an impedance locus over a frequency range. The coordi-
nates are the two parts of a complex impedance (say R and
X). The locus is marked with a frequency scale.

An early example is the motional-impedance circle for a
telephone receiver with a resonant diaphragm. It was de-
scribed in Everitt’s textbook in 1932 and 1937 [4]. Over the
audio-frequency range, the impedance is the sum of two
complex components. One gives a monotonic locus repre-
senting the driving coil. It can be measured with the
diaphragm blocked. The other gives a superposed circle
representing the interaction with the mechanical resonance
of the diaphragm.

The use of a slotted line with a sliding probe was
proposed for impedance measurements before the advent
of the hemisphere chart. Various charts were proposed for
computation of the complex impedance from such observa-
tions. They lacked the principal attractions of the hemi-
sphere chart.

The evolution of the hemisphere chart occurred in the
1930’s. Two milestones are worthy of mention. Each one is
a locus of the constant reflection coefficient plotted on
rectangular coordinates of complex impedance over the
positive-real half-plane. The first was made by Smith at
BTL in 1931 but not published until much later [1], [19].
The contours of the constant reflection coefficient ap-
peared as confocal circles. The second was published by
the author in 1936 [2], [3]. Similar contours were identified
with the constant reflection loss and, hence, with the
constant reflection coefficient. The latter was made for the
purpose of evaluating wide-band matching networks asso-
ciated with a resonant antenna [3].
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Fig. 1. The Carter Chart (RCA Review, 1939).

Then, the hemisphere chart was conceived to display the
entire range of positive-real impedance on the area of a
circle. In the same month (January 1939), the hemisphere
reflection chart was published by Philip S. Carter in RCA
Review [5] and by Philip H. Smith of BTL in Electronics
[6]. These are reproduced as Figs. 1 and 2. The hemisphere
chart as a projection of one-half the impedance sphere was
published by E. U. Condon in 1942 {7].

I derived independently the hemisphere chart in a period
ending on April 4, 1941. A few days later, Phil Carter was
in my office for an IRE committee meeting and I told him
about it. He said it was a good idea, and that he had
published it two years before.

In the Little Neck Laboratory of Hazeltine Corporation,
we were soon using long slotted lines for measuring TV
antennas around 40 MHz. Our war work on IFF led to
slotted-line measurements of antennas at 150-200 MHz
and upward. In 1942, we printed our version of the Carter
Chart in quantities for use as graph paper [8]. I prepared
numerous memos on'its features and its use. On January
14, 1943, 1 described the hemisphere chart to the Radio
Club of America in their regular meeting at Columbia
University. Gradually, the Smith Chart came into common
use in other laboratories. ‘

We adopted the one logical orientation” of the hemi-
sphere chart [8]. All others adopted one or the other of the
different orientations of Carter and Smith. T published a
comprehensive presentation of our views in 1948 [14].

A major development was automatic plotting on the
bemisphere chart. Instantaneous display of a locus on a
cathode-ray tube was described by Arthur L. Samuel in
1947 [13]. Now, automatic mechanical plotting is employed
in the most advanced measuring equipment for high radio
frequencies (say above 1 MHz) [25].

The hemisphere chart has been found to be very useful
in presenting and manipulating impedance computations
for various purposes. One of the most common is the
design of double tuning for wide-band matching between a
line and a resonant antenna.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 9, SEPTEMBER 1984

R
%

o
5
(3

5

e
JLRRS
98 ant

8

22
R
ot

£

\.

FVOT AT GENTER OF CaLCULATOR.

o canEAATOR

BEE 5 E FEEGEELOE S

T

Fig. 2. The Smith Chart ( Electronics, 1939).

Using the hemisphere chart, we took for granted one
peculiarity of that chart. I am referring to the need for
assigning a reference value for the center, and the problem
of compression of a locus far from the center, approaching
the rim of the chart. I came to use some alternatives that
overcame this objection, partially or wholly, as mentioned
above.

In 1948 [15], I plotted some impedance loci on a rectan-
gular grid of the logarithm of impedance. Its coordinates
were magnitude and angle with compatible scales (napiers
and radians, or their equivalent decades and degrees). (See
also [18].) My immediate motivation was the construction
of a ratio mean between two points by bisecting a connect-
ing straight line. On this grid, it was implicit that the size
and shape of a locus was independent of magnitude, but
there remained the compression near the boundary at
either extreme of angle (+90°). If used as a reflection
chart, it would offer only a half-solution of the compres-
sion problem.

Many years later, I sought a real solution to the problem
of compression near a boundary. The result was a unique
solution, from the viewpoint of a reflection chart. It is the
“logarithmic reflection chart,” which I published in 1983
{21], [23]. The impedance magnitude and angle are plotted
on log—log rectangular coordinates. On the vertical real
axis, the log of magnitude corresponds to the log of VSWR.
A compatible horizontal scale is derived as the log of
VSWR caused by reactance only (with resistance
“matched”). On these scales, a reflection locus is centered
on the vertical axis and has quadrantal symmetry. Far
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from the axis, a locus is distorted but does not suffer
compression. This chart loses the simplicity of the circular
loci on the hemisphere chart but gains some qualities that I
have found extremely useful in the synthesis of wide-band
impedance-matching networks. It is remarkable that
another “unique” reflection chart should have evolved so
long (four decades) after the hemisphere chart.

The history of the use of reflection charts has two
branches. They may be correlated with the first two publi-
cations in 1939. One is the use emphasized by Carter [5],
making observations in a transmission line and deducing
the impedance of a load on the line. The other is the use
emphasized by Smith [6], for graphical computation of the
result of adding or subtracting a complex impedance in
series or in parallel, and the inversion of impedance.

The measurement application originally relied on stand-
ing-wave observations by a sliding probe in a slotted line to
determine the reflection coefficient. Subsequently, the di-
rectional coupler enabled the direct measurement of the
reflection coefficient, amplitude, and phase, from which a
point could be automatically plotted on the hemisphere
chart. A coordinate grid could be chosen for reading any
related set of numbers, such as R and X of impedance Z.
This is the most common method of measuring impedance
at high radio frequencies (say above 1 MHz).

The computation application is commonly used in con-
junction with measurements. It displays the reflection coef-
ficient, perhaps in terms of VSWR tolerance of mismatch
over a frequency band. It is convenient for graphical
computation of the effect of series or parallel impedance,
especially reactors in a matching network. If the computa-
tion is performed by a numerical computer, the result may
be plotted on the hemisphere chart.

Aside from graphical computation, the reflection chart is
useful mainly for displaying a frequency locus of imped-
ance in such a way as to be most meaningful on sight. The
logarithmic reflection chart may offer the greatest utility in
this function.

IV. PROJECTIONS OF THE IMPEDANCE SPHERE

Relative to a constant-real reference value, the complex
impedance on a plane can be projected on a sphere [7],
[14]. Fig. 3(a) shows this projection. The positive-real half-
plane is projected on one hemisphere, which gives the
name to the hemisphere chart. The unit impedance ratio is
at the center of this hemisphere.

Fig. 3(b) shows the projection of this hemisphere on a
plane tangent at the center. The circle bounding this pro-
jection is the locus of the unit coefficient of reflection, with
zero at the center. This circle becomes the hemisphere chart
of the reflection coefficient, on which may be plotted the
impedance ratio.

These projections of the impedance sphere were de-
scribed by Edward U. Condon in 1942 [7], and I should
have given him credit in my 1948 monograph [14].

In each of these projections, a circle is projected as a
circle. (A straight line is a special case of a circle.) It
follows that a circle on either plane is transformed to a
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Fig. 3. Projections of the impedance sphere. (a) On the plane of imped-
ance ratio. (b) On the plane of reflection ratio.

circle on the other. For example, the R and X contours are
straight lines on the impedance plane and, hence, circles on
the reflection plane. This fact is responsible for the simplic-
ity of the circle chart and its versatility in geometric
construction of various relations.

V. ORIENTATIONS OF THE HEMISPHERE CHARTS

The graphical presentation of engineering relationships
should be made in a form adopted for logical reasons. A
principal consideration is the communication of significant
information. Another consideration is consistent use of the
logical form.

Coordinates for plotting an impedance locus were first
taken for granted from a precedent for a different purpose.
The slavish adherence to that convention had led to com-
mon use of an orientation that is devoid of logic. I refer to
the Carter Chart and to the later form of the Smith Chart.
It lies on its side. I immediately adopted an equivalent
form but right-side up. The history of these practices is
worthy of note. It is relevant to the hemisphere chart and
any other grid for plotting a locus of complex impedance.

Fig. 4 shows some options in the choice of a pair of
rectangular coordinates. Fig. 4(a) is the classical orienta-
tion for plotting y = f(x). It was natural for that purpose
and did not offend any considerations of logic.

With the theory of functions of a complex variable, there
was a need for plotting a locus of simultaneous variation of
two coordinate-dependent variables with some indepen-
dent. variable. An example is the frequency locus of Z =
R(w)+ jX(w). Because a complex variable was described
as z = x + jy, it was mapped on the same coordinates, as
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seen in Fig. 4(b). This practice disregarded some logical -
considerations.

A thoughtful election would have led to the practice
shown in Fig. 4(c).

N

0]
® First, the axis of the imaginary part () typically has @
paired values and symmetry, so it is natural to use a
left-right orientation.

® Secondl'Ya the POSi_tive'real S(fale is naturally assoc.i' Fig. 5. Choice of hemisphere-chart coordinates for map of positive-real
ated with increasing or “higher” values, so it is hemisphere of impedance ratio. (a) Conventional coordinates for map
natural to use an upward orientation. of reflection coefficient on hemisphere chart. Carter, 1939 [5].

an upwa do (b) Conventional display of positive-real hemisphere of impedance

Both of these considerations are especially relevant to a ratio. Carter, 1939 [5]; Smith later [19]. (c) Upside-down display of

. . . positive-real hemisphere of impedance ratio. Smith, 1939 [6] and 1944
map of Z(w), with which we are here concerned. It is [10]. (d) Logical display of positive-real hemisphere of impedance

notable that Smith and I chose this orientation for our first ratio. Wheeler, 1942 [8] and 1948 [14].
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Fig. 6. The two coordinate systems used for impedance charts. (a) The
plane of impedance ratio (polar or rectangular coordinates). (b) The
plane of reflection ratio (hemisphere chart of impedance ratio).

charts [1], [2]. That should have served as a precedent for
later practices.

Fig. 5 shows the adaptation of such coordinates to the
hemisphere chart, which is the circle of the reflection
coefficient. Fig. 5(a) shows the conventional coordinates
used by Carter [5]. Fig. 5(b) shows the pattern of positive-
real impedance on these coordinates, used by Carter and
later by Smith in his book [19]. Fig. 5(c) shows the upside-
down pattern first used by Smith but later superseded by
Fig. 5(b). Fig. 5(d) shows the pattern of positive-real
impedance on the logical coordinates which I adopted
when I began to use the hemisphere chart. Unfortunately,
the conventional display in Fig. 5(b) is most commonly
used for the familiar Smith Chart. Both have the same
concentric circles of the reflection coefficient, VSWR, re-
flection loss, etc. Peculiarities of an impedance locus are
similarly visible in both forms.

VI. RELATIONS BETWEEN IMPEDANCE RATIO AND
REFLECTION RATIO

The impedance ratio was previously plotted on rectangu-
lar coordinates (z = r + jx) to display a locus over a range
of frequency or some other parameter. Here, the same
locus is plotted on polar coordinates of the reflection ratio
(reflection coefficient, w = u + jv) within a unit circle. The
transformation of this locus from either plane to the other
is determined by the relation between the two sets of
coordinates. These relations are shown in simple form in
Figs. 6-10.
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Fig. 7. 'The polar components of the reflection ratio.

Fig. 6 shows the transformation from the positive-real
half-plane of impedance to the inside of a circle of reflec-
tion ratio. These are the two projections of one hemisphere
as shown in Fig. 3.

Fig. 7 shows the same coordinates with typical loci of the
reflection ratio in polar coordinates. In Fig. 7(a), the
complete circle of constant reflection (w or p) on the z
plane is the same as previously used by Smith [1] and the
author [2], [3]. In those cases, we were not concerned with
the angle of reflection, which is shown by an orthogonal set
of circles. Fig. 7(b) shows merely the polar coordinates of
the reflection ratio.

Fig. 8 shows the transformation from the impedance
ratio in polar coordinates (a) to latitude and longitude on
the hemisphere chart (b). The latter is the simplest map of
the impedance ratio on the hemisphere chart. It was shown
by Carter [5] so it is designated the Carter Chart. This is
the form I adopted in 1942 for use as graph paper. It has
the simplest rules for inversion.

Fig. 9 shows the transformation of the rectangular coor-
dinates of impedance to a set of orthogonal circles on the
hemisphere chart. The two coordinates are shown sep-
arately on the two halves for clarity. Fig. 10 shows the
same for the inverse impedance ratio, which is the admit-
tance ratio. Figs. 9(b) and 10(b) are the Smith Chart [6],
[10], [19]. They are suited for adding series components of
impedance, then inverting and adding parallel components
of admittance. The Smith Chart is most widely used, and
has been found to be extremely useful.
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VII. TRANSMISSION-LINE TRANSFORMATION OF

IMPEDANCE

If a length of line is inserted between the driving point
and an impedance, the impedance is transformed to pre-
sent a different value. If the line impedance (Z,) is taken
as the reference on a hemisphere chart, any point on the
impedance locus is modified in two ways.

® It is rotated by an angle equal to double the phase
length of the line.

® Its radius is decreased by the power ratio of attenua-
tion (if any) in the line.

Each of these results reflects the round-trip effect of the
line on the reflection coefficient of the load impedance.
Their simplicity is a remarkable peculiarity of the hemi-
sphere chart.

Referring to Fig. 11, any point on the chart may be
regarded as the impedance of a length of line on short
circuit. The reflection coefficient is reduced from unity and
retarded in angle by the round-trip attenuation and phase
(2a+ j28). The complex reflection coefficient becomes

w=—wexp — j2B8=—exp —2aexp —28
= —exp —2(a+ jB). ey
The minus sign is required for zero impedance of zero
length on short circuit.
In general, any complex load impedance can be regarded

as a length of line on short circuit (o, 8’). Then, an
inserted length may add its values (a”, 8”). The resulting
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Fig. 9. The series rectangular components of the impedance ratio.

impedance is that of the sum (a, 8). At any stage, the

impedance ratio is

_1+tw
1—-w’

@

There are a few familiar rules for impedance transforma-
tion by a length of lossless line at one frequency.

Z

® A quarter-wave line (8 = 7/2, d = A /4) inverts the
impedance on the chart. For example, a low resis-
tance is multiplied by S2.

® A half-wave line (8=, d=A/2) rotates by one
circle and therefore leaves the impedance unchanged.

VIII. TRANSMISSION-LINE MEASUREMENT OF

IMPEDANCE

There are two methods commonly used for measurement
of an impedance connected to the far end of a lossless
transmission line. The near end is connected with a signal
generator of the desired frequency range. The methods are
diagramed in Fig. 12.

The original method is the one proposed by Carter [5]. A
sliding probe is weakly coupled with a long line to observe
minimum and maximum voltage (or current) and the loca-
tion of the minimum (being sharper than the maximum).
From these observations

=—’$§§Z =—§;}=w; B =27d/\or (360°)d /A
©)

1+
w= —wexp j28; z=1—*$=Z/ZO. (4)
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Fig. 11. Sum of length quantities around the chart.

In effect, the impedance at min} is measured to be
Z,/S. Then, the load impedance is computed by subtract-
ing the intervening length of line (d = (8/27)A).

The later method evolved with the development of the
directional coupler. A weak coupler at a point on the line
enables direct measurement of the complex reflection ratio,
as indicated. The distance to the load (d,) is subtracted as
above to give the reflection coefficient at the load, which
determines the complex load impedance.

This method is used in the Hewlett-Packard line of the
most advanced impedance measuring equipment [25]. Its
utility is restricted to a high-RF range (typically above 1
MHz). It happens that one type of coupler has directivity
nominally independent of frequency. That is the parallel-
line coupler invented long before by Affel at BTL and
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Fig. 12. Two methods for measurement of impedance with reference to
a transmission line.

®)

Fig. 13. Diagrams of the two methods of impedance measurement.
(a) By sliding probe on slotted line. (b) By directional coupler.

Pistolkors in Russia. I adapted it to the coaxial line about
1944 [11]. The usual value of Z, is 50 €.

In Fig. 13, these two methods are explained with refer-
ence to the hemisphere chart.

Fig. 13(a) shows the method of a sliding probe, usually
on a coaxial line. A common line is a round inner conduc-
tor between two planes. It was used by the author from
1944, and later was adopted by Hewlett-Packard. The
VSWR (S) is measured and the location of minimum
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impedance (resistance ratio =1/5) is noted (d). It is taken
as the zero reference in Fig. 13(a). From the point 1/S on
the zero axis, the radius is rotated backward by d to locate
the impedance ratio (z) being measured.

Fig. 13(b) shows the method of a directional coupler,
usually a backward coupler in a coaxial line. First, the
effective length of line between coupler and load is usually
determined for short-circuit or open-circuit termination, It
is determined by the angle of the (unit) reflection coeffi-
cient observed on the coupler. Then, the impedance to be
measured is connected, the reflection coefficient (w) is
observed in terms of magnitude and angle, and it is located
on the chart. The radius is rotated backward by the known
length of line to locate the impedance ratio (z) being
measured.

For either method, the chart gives a graphical view of the
process.

IX. THE USE OF A BLANK CHART

Some of the principal uses of the hemisphere chart do
not require a complete grid of coordinates:

® to display the behavior and critical frequencies of an
impedance locus over a frequency range;

® to show its compliance with tolerance circles of
reflection (commonly VSWR in decibels);

® to take automatic mechanical plotting of a locus by
frequency sweeping.

Then, an overlay or underlay may be used to provide any
desired set of coordinates (and at any orientation). This
enables the plot to be interpreted or read in terms of such
coordinates.

For these uses, we have come to prefer a blank chart for
avoiding the confusion of a “busy” grid of coordinates
(notably the Smith Chart). Fig. 14 shows a skeleton chart
for this purpose. It contains the essential scales, from
which any interpretation can be derived by some simple
construction. A blank chart the same size as the available
Smith Charts can be made with the skeleton scales. Then
one may select any one of the available grids for use as
overlay or underlay. This retains the convenience of the
skeleton chart for annotations. We adopted this practice at
Wheeler Laboratories in 1948. It superseded the Carter
Chart, which had been used as graph paper by some of the
same group previously in the Hazeltine Little Neck
Laboratory. The same practice is continuing in the succes-
sor group now active in the Research Laboratories of
Hazeltine Corporation.

X. ExaMPLES OF USE

The number and variety of uses of the hemisphere chart
are found in the extensive literature on the subject. The
most prolific source may be the IEEE TRANSACTIONS ON
MICROWAVE THEORY AND TECHNIQUES. Smith’s book is
one collection [19]. Two typical examples are given here.
As usual, the locus is a trace of impedance variation over a
range of frequency. The frequency scale has to be marked
on the locus.
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Fig. 14. The scales on the skeleton hemisphere chart.
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Fig. 15. Frequencies of resonance in a long biconical dipole antenna.

Because the hemisphere chart had its origin as a chart of
reflection at the end of a transmission line, its principal
applications have been related to that subject. Various
other applications are a by-product of its properties. The
most common use of such a line has been the connection of
radio equipment with a remote antenna. Therefore, a typi-
cal use of the reflection chart is the presentation of the
frequency locus of the complex impedance of an antenna.

Fig. 15 shows the impedance locus of a long, rather thin,
biconical antenna. (The biconical is chosen, rather than a
cylindrical wire, to avoid excess capacitance at the termi-
nals.) Its half-wave first resonance is at f; and its higher
resonances are at f,, f;, etc., near integral multiples of f,.
The following are notable features of the locus on the
reflection chart.

® FEach frequency of resonance appears near a mini-
mum or maximum of impedance.
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® Each frequency of resonance may be taken at the
point of zero angle, which is the crossing of the
vertical axis, as indicated.

® The locus on the hemisphere chart is a spiral tending
toward convergence at higher frequencies.

® The rotation is proportional to the length in wave-
lengths.

® The convergence is proportional to the radiation of
power from a traveling wave along the length.

® At frequencies much below the first resonance, the
locus approaches the rim of the chart, which indi-
cates the small radiation power factor of a “small
antenna” [23].

@ At higher frequencies, the spiral converges toward a
point representing the wave resistance of the biconi-
cal conductor (here taken as a reference at the center
of the chart). ‘

Most of these features are characteristic of any reflection
chart.

Fig. 16 shows another application. It is related to an
antenna or other load with rather narrow resonance at one
frequency (f;). A common objective is a close approxima-
tion to matching the load impedance to a line over a
frequency band (f, to f,) wider than the resonance. The
deficiency of matching is described by the tolerance of
reflection within the bandwidth (in terms of p>0 or
§ >1). There are two parts to the matching process:

® transforming the load impedance to fall within the
smallest circle centered on the axis of pure R;
@ transforming this center to the line wave resistance.

The most common and most elementary form of wide-
band matching is “double tuning” [24]. It was first used by
the author in 1942, and in various other laboratories around
that time. It is accomplished by providing in the matching
network a second resonance at a frequency near f,, be-
tween f; and f,. With reference to Fig. 16, it is here
developed on the hemisphere chart.

® Z, is the locus of the load, taken to be an antenna of
the type represented in Fig, 15. It has its lowest
resonance at f;. It is a series resonance at minimum
impedance. At edgeband (fi, f,), it has a greater
impedance, which is here taken as the reference
equator on the chart. Then, the locus is similar to a
contour of constant R and varying X. The ends of
the Z, locus give greatest reflection, which is to be
reduced by the matching network.

® The ends of Z, are on a contour of constant conduc-
tance (constant parallel R) shown by a dashed line.
A parallel-resonant network is designed to add op-
posite shunt susceptance. This brings together the
ends of the locus and thereby minimizes the toler-
ance circle around the locus of the resulting Z,.

This simple result could be derived by analysis, but the
chart gives a clear picture of the relations. It is easy to
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Fig. 16. Synthesis of double tuning for wide-band matching.

prove on the chart:

® that this construction gives the smallest tolerance
circle possible by this network;

@ that the reflection coefficient is squared by this pro-
cess (p, = 0}).

Having achieved this result centered on the special refer-
ence equator, the center can be transformed to the line
impedance (Z,) by a simple transformer, as shown.

XI. THE LOGARITHMIC IMPEDANCE CHART

About 1948 [15], I used another set of coordinates which.
were also suited for a reflection chart with vertical axis of
real impedance. It is a logarithmic grid with compatible
scales of magnitude and angle of impedance. It offers the
feature that the shape of a locus is independent of the
reference or the level of impedance.

The feature of this chart is the compatible scales of
magnitude and angle. There is a set of scales that will give
a circular contour of reflection coefficient in the limit of a
small circle. Equal distance on both scales should corre-
spond to the pair of values on either row here:

Magpnitude Angle Angle bounds
one napier one radian + /2
0.6822 decade 90 degrees +90

Fig. 17 shows this chart as it appeared in my 1948
monograph {15]. Compatible scales gave equal weight to
vertical and horizontal distance. There was no need for
contours of the reflection coefficient. The motivation was
to place the ratio mean at the middle of a line joining any
two points of impedance. This is exemplified by the sloping
dashed line.

This chart was a half-solution of the problem of crowd-
ing toward the rim of the hemisphere chart. It removes the
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Fig. 17. The logarithmic impedance chart.
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top and bottom bounds by the log scale. However, it leaves
the side bounds at one quadrant of angle, and therefore the
crowding toward these bounds.

XIL

A few years ago, I again faced the two problems of the
hemisphere chart, namely,

THE LOGARITHMIC REFLECTION CHART

® the shape of a locus depending on a reference value,
and

® the compression of a locus toward the rim of the
chart.

An angle scale was needed to go with the log scale of
magnitude. I perceived a unique basis for a log scale of
angle:

® the vertical log scale of impedance is also a log scale
of VSWR with zero angle;

® a horizontal log scale of the VSWR caused by angle
with level magnitude.

I name these scales log S, and log S,.. They could be plotted
on log-log coordinates in terms of S, or Z (vertical) and S,
(horizontal).
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The following additional symbols are used in this sec-
tion:

z=InZ=z,+In S, = vertical scale.
x = In S, = horizontal scale.
S, =exp(z—2y)=2/Zy=S*! on 7 axis.
S, =expx=S*'on + x axis.
g= X/R =tan¢ = sinh x.
(Distinguish from Q for X/S of a single reactor, as
in a resonant circuit.)
Note relating to the functions In, exp, sinh, cosh:

® the natural functions (base e, napiers) are used for
convenience in theoretical relations;

® the corresponding decimal functions (base 10,
decades) can be used for compatibility with the log
scales on graph paper.

By way of introduction, Fig. 8(b) shows the Carter
Hemisphere Chart [5]. Like the Smith Chart [6], [10], the
basic map of polar coordinates is the reflection-coefficient
magnitude and angle on a circular area. The Carter Chart
has superposed impedance loci in terms of Z and ¢. Each
of these families is made of orthogonal circular arcs. The ¢
loci converge toward the poles. Extreme values are crowded
toward the rim of the chart. A reference (Z,) must be
assigned, and then it determines the shape of any imped-
ance locus that may be traced over a range of frequency.
The chart to be described is based on rectangular logarith-
mic coordinates of Z and a function of ¢.

The logarithmic reflection chart [21], [23] is a departure
from the hemisphere chart in two respects.

@ The vertical scale is a logarithmic scale of impedance
magnitude (Z) so the shape of a locus is indepen-
dent of the reference value (Z,).

® The horizontal scale is a logarithmic scale related to
the impedance angle (¢) in such a way as to give a
like variation with reflection coefficient.

It follows that a locus of reflection coefficient has equal
diameters on both scales. It departs from a circle by equal
flattening in all quadrants.

Referring to Fig. 18, the vertical scale is a log scale of
impedance magnitude (Z). On the vertical axis, the same
log scale gives the VSWR relative to a reference value (Z,).
This YSWR is here denoted

S,=Z/Z,. (5)
The log scale becomes :
z=InZ=1Z,+IS,. (6)

Here, S, may be greater or less than unity so z may be
positive or negative.

At the reference level of Z,, an angle of impedance (¢)
would cause a VSWR here denoted

_I+tan¢/2 _ 1
8= 1—tang¢/2 =secottang = seco —tan¢

(7)
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Fig. 18. The basis for the logarithmic reflection chart.

The log scale becomes
x=InS, =2atahtan¢/2 = asinhtan¢ = acosh (1/cos ¢)

(8)
Here, likewise, S, may be greater or less than unity so x
may be positive or negative, corresponding to ¢.
A locus of the reflection coefficient (magnitude p) corre-
sponds to the familiar VSWR:

S=lﬁ>l;
1-p

S—1

The locus intersects the two axes at
S,=S*'and S, =S*!

These points are shown in Fig. 18.
The two scales ((6) and (8)) are taken to evaluate,

(10)

respectively, Z and ¢ at any point on the x, z plane. The

corresponding value of the reflection coefficient (in terms
of p or S) is thereby determined over this plane, so a locus
can be graphed for any constant value. An example of such
a locus is shown in Fig. 18, centered on Z; =1. It has equal
diameters on the crossed axes

2zor2x=InS—In1/S=2InS. - (11)

It departs from a circle by some degree of flattening in
each quadrant. The vertical log scale assures that the shape
of this locus would be the same for a center at any
reference value Z;, on the vertical axis.

The most significant feature of the log chart is the
reflection locus, compared with the familiar circle centered
on the hemisphere chart. Referring to the typical locus
shown in Fig. 18, these points may be noted.

® Like a circle, it has equal crossed diameters and
four quadrants of like shape.

® Departing from a circle, each quadrant is flattened
in some degree. :
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Fig. 19. Reflection contours on the chart.

® The size is unbounded, thereby avoiding the
crowding near the rim of the hemisphere chart.

® The size and shape are the same for a center at
any reference Z; on the vertical axis.

The departure from a circle is a disadvantage, while the

. last two features are the advantages that make the log chart

especially useful for some purposes.

The size of a locus increases with the log of VSWR, so it
has no bounds, and a wide range can be presented in a
moderate space. Decimal log scales are most convenient,
and the usual log-log graph paper is suitable.

Fig. 19 shows a decimal log chart with a family of
reflection loci. The two scales are:

® vertical Z or S,R,;
® horizontal S,.

On the horizontal scale, from (7):

X

e 02

R=Zcos¢; X=Zsing. (13)

These relations describe the impedance at any point on the
chart.

The locus of any reflection coefficient (p) can be shown
to be

¢ = 2atan =atan%(Sx—1/Sx)

2
1te =coshxcoshz = —1—(Sx +1/S.)(S, +1/8,).

1-p? 4
(14)

It is easily evaluated in terms of the natural log (x, z) and
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Fig. 20. Impedance contours on the chart.

converted to decimal log. This form shows the symmetry
on both axes.
The locus approaches a small circle near the center:
(2p) =x?+ 22

(15)
Far out, the locus approaches a large diagonal square:

25=S5.S,. (16)

The circle and square are outer bounds, as seen in Fig. 18.
They are tangent if S = 5.33; then the 45° radius of the
locus is less than that of the outer bounds by the factor
0.925. This factor is an example of the flattening of the arc
in each quadrant.

For computations, it is helpful to express the angle scale
in terms of g = X/R, which retains the sign of the angle:

g=X/R=tan¢ = %(Sx —1/8,)=sinhx  (17)

sx=\/1+q2+q=——1—— (18)

14 —-q

Below the log—log grid in Fig. 19, there are supplemental
horizontal scales in terms of the angle (¢) and its tangent
(g). They are converted to S, by (7) and (18).

For graphical presentation of impedance on any scale of
frequency, it has been customary to use a log scale of Z
and R. Both of these are positive. There has been no
logical logarithmic presentation of X or ¢, both sides of
zero. The S, scale offers a unique solution to this problem.
It represents + ¢ above and below unity on the log scale.
If the Z variation is plotted from a reference (as §, =
Z/Z,), the S, graph may be superimposed about the same
unity level on the log scale.

A pair of R and X loci have the shape shown in Fig. 20.
The pair is based on one value of Z,. A family is formed
by vertical displacement with the same shape, a feature of
the log chart.

R locus: Z/Z,=exp(z—z,) = Rcoshx =R /cos¢

1+(—Sx—‘1—)2). (19)

=R 25,

TEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MIT-32, NO. 9, SEPTEMBER 1984

X locus: Z/Zy=-exp(z—zy) = X/tanh x = X/sin¢

2
s2-1/

A particular set of coordinates has been devised for
presentation of any impedance locus. The scales are loga-
rithmic in terms of VSWR, which is a measure of the
reflection coefficient. A locus of constant reflection has
equal diameters on the crossed axes but differs from a
circle. The shape of a locus is independent of the choice of
a reference value of impedance.

This logarithmic reflection chart has been found espe-
cially helpful in presenting the wide range of impedance,
which is typical of a small antenna and a wide-band
matching network for such an antenna.

XIII.

A chart of contours of the reflection coefficient has
evolved through several principal forms. Each has one of
these distinctive grids of coordinates:

= X|1+

(20)

CONCLUSION

1) rectangular coordinates of the complex impedance;

2) polar coordinates of the reflection coefficient (the
hemisphere chart);

3) rectangular coordinates of the log of impedance
(compatible scales of magnitude and angle);

4) rectangular coordinates of the log of impedance
magnitude and a compatible function of the angle
(the logarithmic reflection chart).

After the first, each form offers a particular grid on which
may be plotted a frequency locus of impedance. The sec-
ond is the one in most common use today, as the Smith
Chart or the Carter Chart. The last offers an opportunity
for relief from some limitations of the hemisphere chart,
but at the expense of some other valuable features.

The subject of these charts is a branch of the technology
of graphic presentation of relations among some variables
in a physical system. In this case, the variables are frequency
and impedance. The reflection at the end of a line is an
intermediate quantity which is particularly relevant for
some applications. A chart of the reflection coefficient has
proved helpful in various ways in the course of its evolu-
tion in different forms.
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